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Outline

® |ntroduction

® Extended interaction region and detector integration

® Forward hadron spectrometer
— Small-angle detection of hadrons and nuclear fragments

® Central detector
— Layout and subsystems

® |[ntegrated small-angle electron detection
— Compton polarimeter, low-Q? tagger, luminosity monitor

® Bunch identification and asynchronous triggering at high rep rates
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A detector for the EIC science program

Electron lon Collider:
The Next QCD F i

"N

LONG RANGE PLAN
‘or NUCLEAR SCIENCE

R

® The JLab EIC full-acceptance (IP1) detector is designed to support the
physics program outlined for a generic EIC

—  Long range plan, White paper, INT report, etc
— Particular attention paid to the more demanding exclusive- and SIDIS reactions
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A detector for the EIC science program

@ The IP1 detector is also designed to take full advantage of unique features of
the JLab EIC, and exploring physics opportunities beyond the white paper

— Polarized deuterons possible with novel figure-8 accelerator layout
— Capability to measure the complete final state, including all nuclear fragments

@ The modular design of the IP1 central detector is also well suited for
a two-detector scenario —» talk by K. Hafidi

— Complementary, smaller IP2 detector with focus on calorimetry

Vector
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Detector locations and backgrounds

* IP locations reduce synchrotron- and hadronic backgrounds
*  Far from arc where electrons exit (synchrotron)

* C(Close to arc where ions exit (hadronic) — shown below

* Scaling from HERA (pp cross section, multiplicity, current)
suggest comparable hadronic background at similar vacuum

But it should be possible to reach better vacuum!
(early HERA: 107, PEP-II: 10, LHC 10-'° torr)

EIC luminosity is more than 100 times higher

Signal-to-background (random hadronic)
should be 103-104 times better than HERA

Detector

* Crossing angle and soft bends
reduce synchrotron radiation at IP
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Detector and interaction region

(top view in GEANT4)

- ©

low-Q?2 electron detection =

and Compton polarimeter Forward hadron spectrometer ZDC

- jt;:Efl

® Integration of extended detector highest priority for JLab EIC design
— Accelerator layout can be optimized for detector requirements

Extended detector: 70+ m

[ |
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Design goals for the JLab IP1 detector

L (top view in GEANT4) o
- —
low-Q?2 electron detection T
and Compton polarimeter Central detector Forward hadron spectrometer ZDC

Electron Polarimetry
Low-Q2 tagger @
Lumi monitor
/ Forward hadron
Y \ spectrometer
4 ~55 mrad bend
//,/
///
e Design goals:
// 1. Detection/identification of complete final state
//_ 2. Spectator p; resolution << Fermi momentum
/ 3. Low-Q? electron tagger for photoproduction feDu(fr;?sr
4. Compton polarimeter with e- and y detection
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Beam optics for extended detector

(top view in GEANT4)

low-Q? electron detection

Forward hadron spectrometer

and Compton polarimeter 7DC
electron optics
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primary focus

2" focus and large
dispersion at Roman pots
(for recoil baryon detection)

2"d focus on Compton detectors,
dispersion for low-Q? tagger
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Forward hadron sEectrometer

Compensating

— solenoid and 20 Trm divol Aperture-free drift space hlgh—rei. ZDC (n, )
2 Tm dipole tracker m dipole s
N P
, .I_Lf_-——_—‘-’x::\é — 4 Forward hadron spectrometer «
solenoid ~——="""mw - e <«—

S-shaped dipole configuration Spectator protons  Recoil proté)ns (e.g. DVCS)

- Optimizes neutron acoeptance (exit windows) (roman pots at focal point)

and beam line separation (> 1 m)

50 mrad crossing angle “. Spectator proton angle after dipole is 75 mrad (from beam)
(Belle 1I: 83 mrad)

detector match/
[P elements beam compression
match/ geom. match/
beam expansion FFB| FFB l disp. suppression ¢

H S BN N N
S R I

3000. fon interaction region

E B . B, D.
£ 2500. 1 l‘
g; 2000. - J]
@ 1 1%
g g -z -2« TLarge 20 Tm dipol id Ilent resoluti
S T o arge m dipole provides excellent resolution
1000. - : . o
- Ml . 0 * Large dispersion and small beam size at secondary
. / 1 .
200. | / \‘ f [ 0.8 focus ensure good acceptance for recoil baryons
1‘ [
0055 4o 50, zo0.""? '« Large quadrupole apertures (1 / max beam energy)
) N give good acceptance for hadronic and nuclear
IP u :
Roman pots fragments, charged and neutral (high res. ZDC).
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Fragment acceEtance and resolution

_: dp/p , > * Full acceptance for all partonic
proton-rich fragments ) ngutron-rlch fragment.s” and nuclear fra gments achieved!
“spectator protons from 2H” “tritons from N=Z nuclei

— Low gradient, large aperture
magnets (quadrupoles)

* Detector resolution designed to be
better than intrinsic momentum and
angular spread of the beam

— Longitudinal (dp/p): few x10*
Forward charged-particle acceptance — Angular (0, for all g): < 0.3 mrad

horizontal plane vertical plane

Neutron acceptance (x and y): 25 mrad cone
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Red: Detection before
ion quadrupoles

Blue: Detection after
ion quadrupoles

Scattering angle at IP

(degrees)
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DVCS: recoil proton acceptance

e Kinematics: 5 GeV e on 100 GeV p at a crossing angle of 50 mrad.
~ Cuts: Q?>1GeV?,x<0.1, E’,> 1 GeV, recoil proton 100 outside of beam

® GEANT4 simulation: tracking through magnets done using GEMC

low-t acceptance high-t acceptance
—10?

70
60
50

—_
o
&

High-1 acce;ance limited

p beam at 50 mrad
o o by magnet apertures

107

\Y
IIIIIIII

4 - .
10 NO (beam separation not-an issue

with 50 mrad crossing angle)

III|IIII|IIII|IIIlll‘llll‘lhlllllllll

Proton angle at IP 6, (mrad)

40 o o .
100 beam size cut: : =19GeV2 :
30 p <99.5% of beam for all angles | 10 14 mrad ]
20 0 > 2 mrad for all momenta . I
10 10°
10 e beam at 0 mrad I .
IIIIIIIIIIIIIIII L Y NS .
Q092 94 96 93 100 L 1 12 14 16 18 | 22
P (GeV) -t (GeV?)

® Recoil proton angle is independent of electron beam energy: 6, = p/E, = \/(-t)/Ep
® The ion beam size (focusing, emittance, cooling) introduces a low-p (-t) cutoff

® Larger cone at lower E, decreases the cutoff and make precise tracking easier

B
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SEectator tagging: heutron structure

MC Simulation / GEMC

@ deuterons: - magenta -
@ e : - cyan -
@ protons: - orange -

ZDC

Tagged spectator protons
(no lower limit since rigidity
is different than the beam)

Neutron structure function F,,
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EIC simulation
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Mi- —t from recoil momentum [GeVz]
@ On-shell extrapolation of F,_

- Requires resolution better than
Fermi momentum (< 20 MeV/c)

— Resolution scales with p

_ JLab design can reach 20 MeV/c
even with 50 GeV/A deuterium!
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Central detector: design considerations

JLab EIC detector: 10.5 m quad-to-quad

® Modular design, compatible with
CLEO and BaBar 1.5 T solenoids,
or a new 3 T solenoid
— 4 mlong coil, 3 m diameter
- FOM ~ BR? for tracking in barrel
6 mrad ion

- Central tracker resolution is not LR = R
an issue if R is utilized well ' Dipole

- 4 m long inner magnet coil Hcal+
- solenoid field 1.5 - 3 Tesla - muons

® Luminosity ~ 1/ (total distance)
between ion quadrupoles
_  Stat. error ~ V(distance)
— Important, but not at the 10% level

-~ Endcap space allocation driven by
physics, not accelerator

® Full-acceptance also implies good
performance over full angular range

— Particular attention paid to small-
angle capabilities

e EIC physics requires excellent PID e 41 Hcal (and muons) possible, but...
- Atleast one detector must provide it! _  partial coverage at IP1 combined with
- Most challenging requirement, drives a smaller, calorimetric IP2 detector
layout and size of the central detector could be more cost-effective
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Central detector: overview

® Asymmetric IP location within solenoid and different endcaps
— Maximizes solid angle for electron endcap
—  More space for tracking and ID of high-momentum forward-going hadrons

® Makes full use of 50 mrad crossing angle and 2 Tm dipole

S\
a “% cO
Muon chambers g’

Modular (&
aerogel Sci-Fi EM calorimeter
RIC

Shashlyk EM cal

tracking

6-mrad out- gme
bend dipole

Hcal+

. . muons
4 m long inner magnet coil

solenoid field 1.5 - 3 Tesla

»
» N

Coil wall

central barrel hadron endcap
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Central detector: subsystems and R&D

e JlLab staff and users actively participate in the Generic Detector R&D for an EIC
— Good opportunity for groups from JLab, BNL, and universities to work together
_ Important to continue and increase funding for this program
_ Baseline JLab IP1 detector uses many of these technologies
Need to await outcome of R&D for final subsystem choices

WS
e <
Muon chambers S\\"“"

Modular ()
erogel Sc1 Fi EM calorimeter Dual I
RIC RICH .::i.f
aerogel ::

Shashlyk EM cal

tracking

-
— = ==
: é g 6-mradout-
S5 bend dipole
f dz
)
I T
[ Hcal+
_ muons
= ! 4 m long inner magnet coil
§ n solenoid field 1.5 - 3 Tesla
S 1 < > <
electron endcap central barrel hadron endcap
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Dual-radiator RICH on hadron side

® Full momentum range (11/K up to ~50 GeV/c) BJto B

® Outward-reflecting mirrors Hadron-side field in the IP1 solenoid
_  Move sensors away from '
the beam

- UV photons from CF, gas
do not go through aerogel

B]G]

R(cm)

® Smearing from field
perpendicular to the
track can be suppressed &
by active shaping e

B, [G]

Gas
photons

e 3D focusing ensures
small sensor area (blue)

| ® Dual-radiator RICH R&D
Aerogel photons\EE///SN BEAN is pursued by the EIC
N PID consortium (eRD14)

—p talk by Z.W. Zhao
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PID on the electron side

e Significant pion background
up to a few (4-5) GeV/c

@ Should supplement EM cal.
for reliable identification of
scattered electron

_  Threshold Cherenkov, or
- Hadron-Blind Detector?

® Asymmetric layout increases
solid angle covered by
electron endcap

® Projective, modular aerogel

High-resolution mRPC RICH (eRD14)
10-20 ps TOF (eRD14) _ /K separation up to ~10 GeV/c
- TOF in both endcaps _  Good range since hadron ID
and barrel important for above typical electron beam
bunch indentification energies is not needed here
(30'5_0 ps.w.ould be ok) _ Endcap area smaller than
- Relative timing (t, from barrel, but Important to reduce
identified electrons) sensor costs (LAPPDs?)
—p talk by 1. Choi —p talk by Z.W. Zhao
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Hadron ID In the central barrel

N

/
-
=

é Dual

EM calorimeter L:&ﬁ RICH
— e ~ -

2~ Aerogel }::‘

Muon chambers

+CFy

6 mrad ion
out-bend
Dipole

4 m long inner magnet coil \ Hcal+
solenoid field 1.5 - 3 Tesla muons

Compact DIRC
readout

® ADIRC is a radially compact (2 cm) Cherenkov detector
] - Used at BaBar, planned for Belle I, GlueX

e EIC R&D (eRD14) show that performance can be
significantly improved by using focusing lens optics
_  p/K:10 GeV/c, 11/K: 6 GeV/c, e/m: 1.8 GeV/c
— Very compact readout “camera” with small sensor area

—p talk by G. Kalicy
e Additional PID from TOF and, possibly, central tracker
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Central tracker with PID beyond dE/dx?

Ultra-low mass, He-filled, cluster
counting drift chambers

Particle Separation (dE/dx vs dN/dx)

TPC and HBD sharing gas volume

gof © 1| AR dE/dx (5%) —— dN/dx (N2
sigma

7 analytic estimate
for 45° track n-y
K-t

p=-K

0,1 1 10 100

p [GeVIc]

® Based on KLOE (INFN) and proposed
muZ2e and ILC 4t concept chambers

—  Precise tracking of low-momentum e-

® Proposed for the PHENIX hadron-blind
detector (HBD)

~ e/mIDupto4 GeVic

® Cluster counting (dN/dx) gives a very
significant improvement over dE/dx ® R&D pursued for the PHENIX upgrade

_ Hadron ID complementary to Cherenkov and within the eRD6 tracking consortium

detectors: /K separation better than K/p - Bench tests suggest concept is possible

N
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Low-massz cluster-counting tracker

Particle Separation (dE/dx vs dN/dx) Track resolution vs p (theta = 45 degree)

1,E-02
# of

sigma

-y

K-t 1,E-03
p=-K

=—Deltap/p
—Deltaphi
—Deltatheta

1,E-04

0,1 1 10 100 0,1 1 10 100
p [GeVIc] momentum [GeV/c]

® Analytical performance estimates for a low-mass tracker in a 3 T field

—JLab IP1 geometry: 0.2 m inner- and 1.1 m outer radius (could also be adapted for IP2)
— Design performed by the INFN-Lecce group
e He-filled chamber with low-mass, all-stereo wires
— Minimal multiple scattering and good angular resolution
—  Does not require very flat central solenoid field (easier to integrate with dual-radiator RICH)
@ Slow He gas and a readout with high-frequency sampling make it possible to measure
the arrival of each cluster at the wire, greatly improving hadron ID
— Poor resolution at crossover points at low p where the dE/dx (and dN/dx) for each pair is equal

B
& ©A Eic User Group Meeting, 11712016 Jeffer: Son Lab



Vertex and endcaE trackers

® Asilicon-pixel vertex detector is
important for heavy flavor physics
— Several technology options

—Important to await Belle Il experience
with new DEPFET-based pixel SVD

Muon chambers

EM calorimeter

6 mrad ion
out-bend
Dipole

\Sén long inner yagnet coil _\ Hcal+

Belle Il silicon
vertex detector

lenoid field 1/5 - 3 Tesla muons

\ ! 5m
Endcap GEM trackers

Crossing angle

«— ® Baseline solution for both endcap trackers
‘ are micropattern gas detectors (eRD6)
_  Similar to GEMs developed for SoLID
® Due to a large crossing angle (50 mrad) ~ Micromegas could also be used in barrel
and dipole, silicon trackers are only
needed in the vicinity of the vertex ® An interesting option would be to replace
_  Crossing shifts zone of poor resolution or combine the ion-side GEM with a TRD
along solenoid axis into periphery — e/ ID over 2-100 GeV/c range is ideal for
_ 2 Tm dipole between solenoid and ion background suppression in J/y decays or
quads further improves resolution detecting backward-scattered electrons
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Electromagnetic calorimeta

Shashlyk and PWO, R&D
is carried out by the eRD1
calorimetry consortium

COMPASS Shashlik module
SoLID will use similar modules

Muon chambers

® Asin CLAS, the endcap
EM cals are divided into EM colorimeter
inner and outer parts.
_  Outer: Shashlyk can";‘ésrf_'jse g
—  Inner: PWO, I Ny 6 mrad.ion i on hadron side

out-bend
Dipole

JLab NPS PWO,

@ Quter calorimeter

4 m long inner magnet coil Hcal+

provides e/t ID and solenoid field 1.5 -3 Tesla . muons
photon detection 3m ) 5m

e The high-resolution (2%/E) e Compact scintillating fiber EM cal in central barrel
Inner calorimeter also _ GlueX BCAL (lead Sci-Fi) is a good option
provides energy information — Tungsten powder (eRD1) could be an alternative,
for electron momentum although construction is very labor intensive
reconstruction where the _  Pre-shower functionality (y/11° separation for DVCS)
tracking resolution is poor is important in both barrel and endcaps
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ComEton Eolarimetm

® Experience from HERA: uncertainty > 1%
_ Limited to detection of Compton photon only
_ Accelerator limitations (non-colliding bunches)

® Experience from JLab and SLAC

— SLD at SLAC reached 0.5% detecting the Compton electron

_ Compton polarimeters in Halls Aand C at JLab reach < 1%
detecting both the photon and the electron for cross check

Laser at chicane center ensures that polarization is identical to IP

Electron
Detector

Dipole

Scattered
Electrons

B oo FIRUNVNVVRE o
/'

% Backscattered

Photons

Fabry-Perot
Optical Cavity
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Polarimeter and low-Q? tagger

30 m
< — > [ L 1
Compton polarimeter and low-Q? tagger in GEANT4
% Laser
Compton photon detector
Low-Q? tagger for

- calorimeter and/or pair
spectrometer Ve /\

low-energy electrons

N
Low-Q2 tagger for high- \\
energy electrons
beam t N Compton slectron Luminosity monitor b
¢ beam 1o tracking detector e beam
spin rotator R J (from SLAC?) /\ from IP
< Compton- and low-Q? electrons A A P
. : |
are kinematically separated! \/ Photons from IP

e [P1 will have a large, integrated chicane
— Detection of both Compton electron and photon
— Low synchrotron backgrounds
— Low-Q? tagger for photoproduction
— Luminosity monitor (from PEP-II?)

—p talk by J. Hoskins
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Compton/low-Q? chicane layout

Compton electron detector

/ in Roman pot

Compton photon
calorimeter

Optical table with cavity

Very low Q2 electron detector : /
in Roman pot

Luminosity monitor
Zero Degree calorimeter

Low-Q? tagger
in GEANT4
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Bunch sEacing and identification

@ Detectors (CLAS, BaBar, etc) at machines with high bunch crossing rates
have not had problems in associating particle tracks with a specific bunch.

—Having more bunches lowers the average number of collisions per crossing

e Example: CLAS detector at JLab 6 GeV K-e coincidence time
— 2 ns bunch spacing (500 MHz rep. rate) in CLAS 6 GeV data
— 0.2 ns TOF resolution (0.5 ns FWHM) oo

_ The figure shows time matching of kaons in CLAS
with electrons in the (low-Q?) tagger, in turn
matched to the accelerator RF signal

The 2 ns bunch structure is clearly resolved
—  CLAS12 aims at a TOF resolution of 80 ps

5000
4000
3800

2000

electron-kaon counts

® The bunch spacing in the MEIC is similar to CLAS and
most e*e colliders

—  PEP-lI/BaBar, KEKB/Belle: 8 ns (1/4 of buckets full) i
— Super KEKB/Belle II: 4 ns (2 ns with all RF buckets full) |
~ JLab EIC: 2 ns [476 MHz — as in PEP-II] '
— CERN Linear Collider (CLIC): 0.5 ns [2 GHZ]

1000

=
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Asxnchronous triggering

® The JLab EIC will use a “smart” asynchronous trigger and pipelined
electronics

—  The L1 rate is expected to be comparable to GlueX (200 kHz)
Low-Q? (photoproduction) events will be pre-scaled

_  Simple tracking at L2 will suppress random background
Already planned for CLAS12

® Data-driven, asynchronous triggers are well-established

_ If the number of collisions of interest per bunch crossing is << 1,
synchronizing the trigger to each RF clock cycle becomes inefficient

_  Sampling rate requirements for the pipelined electronics depend on signal
properties and backgrounds, not the bunch crossing frequency

JLab 12 GeV uses flash ADCs with 250 MHz (4 ns) sampling

— When a trigger condition is fulfilled (e.g., e found), memory buffers are
written to disk or passed to L3 (at PANDA signals will go directly to L3)

_ Correlations with the RF are made offline
_ TO can be obtained from tracking high-3 particles (e.qg., electrons in CLAS)

B
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Summaa and Outlook

® The JLab full-acceptance (IP1) detector has been designed to support the
full physics program of the EIC

- Easily adaptable to a two-detector scenario

® The extended IP1 detector has been fully integrated with the
accelerator

—  Unprecedented small-angle acceptance and resolution
— High-precision electron polarimetry and low-Q? tagging

® The central detector offers great performance, in particular for the
more demanding exclusive and semi-inclusive processes

-~ Excellent PID
— Doubly asymmetric layout optimizes available space
—  Need to await R&D results for final decision on all subsystems

® |Lots of opportunities for collaboration on detector design and R&D
_  Generic Detector R&D for an EIC program important!
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